PSU Mark
Eberly College of Science Mathematics Department

Meeting Details

For more information about this meeting, contact Carina Curto, Tim Reluga.

Title:Identification and control of the dynamical repertoire of intracellular networks
Seminar:Theoretical Biology Seminar
Speaker:Jorge Gómez Tejeda Zañudo, PSU
An important challenge when modeling intracellular networks is to relate the network structure and function to its stable patterns of activity (attractors). Here we present an approach that can be efficiently applied to large network sizes (up to size 1000 and possibly beyond). Formulated in a discrete dynamic framework, this method is based on a topological criterion to find network motifs that stabilize in a fixed state. Combining these network motifs with network reduction techniques, our method predicts the dynamical repertoire of the network elements (fixed states or oscillations) in the model's attractors, and has also been shown to find all of the model's attractors. To illustrate the applicability of our method, we apply it to two different intracellular network models: the network involved in a type of T cell cancer (T cell large granular lymphocytic leukemia), and the network involved in the metastasis of a type of liver cancer (hepatocellular carcinoma). Interestingly, we find that the network motifs identified during our reduction method play a significant role in the cell fate decision mechanisms in both systems, and also provide insights into how to control the dynamics of the system. References: Zañudo JGT and Albert R. An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos 23 (2), 025111 (2013); Steinway SN et al. Network Modeling of TGFß Signaling in Hepatocellular Carcinoma Epithelial-to-Mesenchymal Transition Reveals Joint Sonic Hedgehog and Wnt Pathway Activation. Cancer Research 74 (21), 5963–77 (2014); Zañudo JGTZ and Albert R. Cell fate reprogramming by control of intracellular network dynamics. arXiv:1408.5628 [q-bio.MN]. In review (2014).

Room Reservation Information

Room Number:MB106
Date:01 / 20 / 2015
Time:01:00pm - 02:00pm