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Inertial effects on viscous fingering
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We present a nonlinear unsteady Darcy’s equation which includes inertial effects
for flows in a porous medium or Hele-Shaw cell and discuss the conditions under
which it reduces to the classical Darcy’s law. In the absence of surface tension we
derive a generalized Polubarinova–Galin equation in a circular geometry, using the
method of conformal mapping. The linear stability of the base-flow state is examined
by perturbing the corresponding conformal map. We show that inertia always has
a tendency to stabilize the interface, regardless of whether a less viscous fluid is
displacing a more viscous fluid or vice versa.
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1. Introduction
Understanding the evolution of the interface between two immiscible fluids when

one is flowing into the other is of fundamental importance in fluid dynamics. In
a fluid held between two closely spaced parallel plates, known as a Hele-Shaw cell
(Hele-Shaw 1899), if the displacing fluid has lower viscosity than the displaced fluid
the interface will develop hydrodynamical instability which results in highly ramified
patterns (Saffman & Taylor 1958; Paterson 1981; Bensimon 1986). This phenomenon
is known as viscous fingering, and it may also occur when the elasticity of the fluids
acts as another driving mechanism (Lemaire et al. 1991; Podgorski et al. 2007; Mora
& Manna 2010). Pattern formation of similar type has been observed in a variety
of non-equilibrium systems besides viscous fingering, such as crystal growth (Langer
1980), electrodeposition (Matsushita et al. 1984) and solidification (Hunt 1999).

The canonical mathematical model for Hele-Shaw flows is Darcy’s law, where the
flow velocity is proportional to the pressure gradient. Under the assumption that the
flow is incompressible, the pressure field satisfies Laplace’s equation; therefore, such
an evolution of the free interface is also called the Laplacian growth process. By
averaging the velocity over the direction perpendicular to the cell, one can reduce the
three-dimensional flow problem to two-dimensional, thus allowing the use of complex
variable techniques. As a powerful tool for both analysis (Bensimon 1986; Howison
1992) and numerical computations (Aitchison & Howison 1985; Dai et al. 1991),
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the method of conformal mapping takes its strength from transforming the generally
difficult task of solving a moving-free boundary problem into finding solutions to
a single differential equation of an analytic function on a fixed domain, usually
the half-plane or the interior of the unit disk. Translating the dynamics implicit in
Darcy’s law to this formalism leads to an equation of the map for Hele-Shaw flows,
derived independently by Polubarinova-Kochina and Galin in 1945, now known as
the Polubarinova–Galin (P–G) equation (Howison 1992). Several exact solutions to
the P–G equation have now been obtained (see Gustafsson & Vasil’ev 2006 for a
comprehensive overview). The linear stability analysis for radial fingering done by
Paterson (1981) can also be obtained using the P–G equation, as shown below. In
the two-phase Hele-Shaw flow problem, much less progress has been made, since in
general it is difficult to find a conformal map which takes a region and its complement
in the parametric plane onto the corresponding regions occupied by the two phases.
Exact solutions are attainable only in some special cases (Howison 2000; Crowdy
2006).

Despite the richness of studies in quasi-static Hele-Shaw flows, little effort can
be found in the literature to understand the character of fluids’ inertia. The
desire to answer this question manifests itself when a fluid is injected in a time-
dependent, especially fast-oscillating manner. In a recent work, Li et al. (2009) showed
experimentally and numerically that the interfacial Saffman–Taylor instability in a
circular cell can be suppressed by pumping the fluid at a rate Q(t) ∼ t−1/3. Yet,
the equation they considered is Darcy’s law; thus the role that inertia of fluids
plays remains veiled. Gondret & Rabaud (1997) and Ruyer-Quil (2001) took into
consideration the inertial effects and generalized Darcy’s law under slightly different
assumptions. The equations they obtained are of the same type but have different
coefficients. Chevalier et al. (2006) examined experimentally that in a linear Hele-
Shaw cell the inertial effects can be significant if the displacing fluid has low viscosity,
or large velocity, or if the cell thickness is large, that is, if the modified Reynolds
number is not too small. They found that inertia has similar effects as capillary force
in that they both tend to slow down and widen the fingers.

A complete treatment of the Hele-Shaw problem, one which could include inertial
effects, is still lacking. It is the main goal of this paper to investigate how inertial effects
may alter the structure of this mathematical system and particularly the stability of
the free interface. Our aim is to provide a mathematical description on the basis of the
conformal-mapping method to enhance our understanding of the full Hele-Shaw flow
problem. The contents of this paper are as follows: in § 2 we present a dimensionless
form of the generalized Darcy’s equation and the conditions under which it reduces
to Darcy’s law. The method of conformal mapping that leads to a generalization of
P–G equation is presented in § 3. The generalized P–G equation allows not only exact
solutions but also a straightforward way to study the stability of the problem. Section 4
is devoted to examining the linear stability of the free interface when inertial effects
are not negligible, by perturbing the conformal map obtained from § 3. In § 5 we
discuss how small inertia would change the stability of the interface.

2. Derivation of the unsteady nonlinear Darcy’s equation
We denote by ρ, v and P the dimensional fluid density, velocity field and pressure

field in the three-dimensional space, respectively. Let ν be the kinematic viscosity.
Consider in a Hele-Shaw cell the three-dimensional Navier–Stokes equation with the
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incompressibility condition:

vt + (v · ∇)v = − 1

ρ
∇P + ν�v, (2.1)

ux + vy + wz = 0. (2.2)

Let U be the characteristic horizontal flow speed, L the horizontal length scale and
h the thickness of the cell. For a typical Hele-Shaw cell h/L � 1, so it follows from
(2.2) that w is of the order of Uh/L; thus is assumed to be zero. Consequently the
z-component equation of (2.1) implies that P is a function of x and y only (see
e.g. Acheson 1990).

Dimensionless variables can be defined as follows:

(x ′, y ′, z′) =
1

L

(
x, y,

L

h
z

)
, t ′ =

t

τ
,

(u′, v′) =
1

U
(u, v), P ′ =

h2P

ρνUL
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

Using these variables and applying the lubrication approximation (�v � ∂2v/∂z2) we
can rewrite (2.1) as

αv̂t + Re∗(v̂ · ∇′)v̂ = −∇′P ′ +
∂2v̂

∂z′2 , (2.4)

where v̂ = (u′, v′) and ∇′ = (∂/∂x ′, ∂/∂y ′); α =h2/ντ is a dimensionless number and

Re∗ =
Uh2

νL
=

(
h

L

)
Re (2.5)

is the modified Reynolds number (Chevalier et al. 2006). Since it can be inferred from
(2.4) that when α = Re∗ = 0 the velocity v̂ has a parabolic profile, it is reasonable to
assume that it remains parabolic when α and Re∗ are small enough. In dimensionless
form it reads

v̂(x ′, y ′, z′, t ′) = z(z − 1)A(x ′, y ′, t ′), (2.6)

for A= (A1, A2). We define u′ to be the averaged value of v̂,

u′(x ′, y ′, t ′) ≡
∫ 1

0

v̂(x ′, y ′, z′, t ′) dz′, (2.7)

and integrate (2.4) from z =0 to z = 1. The resulting equation, with the primes
dropped, is

αut + 6
5
Re∗(u · ∇)u + 12u = −∇P. (2.8)

The dimensional version of this equation was to our knowledge first derived by
Gondret & Rabaud (1997). A similar approach was taken by Ruyer-Quil (2001),
who obtained an equation in the same form but with different coefficients because
of a discrepancy in the way the horizontal flow velocities were averaged. Here we
derive the same equation, using slightly looser assumptions than Gondret & Rabaud
(1997); namely the horizontal velocities have a more general form (as in (2.6)).
Throughout this paper, (2.8) (with possibly different constant coefficients) will be
called the unsteady nonlinear Darcy’s (UND) equation.

Our derivation assumes that α and Re∗ are both small. It is evident from (2.8) that
Darcy’s law is a limiting case of the UND equation when both α and Re∗ vanish.
In most experiments performed in Hele-Shaw cells, α and Re∗ are small. Note that
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the Reynolds number Re = Uh/ν is not necessarily small. In order to understand the
physical meaning of α, let us consider a viscous fluid being pumped into or removed
from a cell through a point at a rate of area change:

Q(t) = Q0 + Qp sin(ωt) (2.9)

(Q0, Qp and ω are constants). Fluid injection will correspond to Q > 0 and extraction
to Q < 0; we require |Qp| < |Q0| to avoid a scenario that includes both. Let a(t) be
the radius of the radially growing (or shrinking) interface; then it follows from mass
conservation that

a(t) =

√∫ t

0

Q

π
ds + a(0)2, a(0) � 0. (2.10)

The time scale τ can be defined to be the minimal value of the ratio of velocity of
the growing circle to its acceleration within a period of oscillating injection:

τ ∼ min
t∈[t0,t0+

2π
ω

]

∣∣∣∣ ȧä
∣∣∣∣ = min

t∈[t0,t0+
2π
ω

]

∣∣∣∣ωQp cos(ωt)

Q
− Q

2πa2

∣∣∣∣
−1

. (2.11)

Two distinct cases are worth emphasizing: (i) Qp = 0, implying τ ∼ 2t0 + 2πa(0)2/Q0.
No second time scale thus exists, and choosing τ = L/U identifies α with Re∗. (ii)
Qp 
= 0 and ω is large. The dominant term in the absolute value sign of (2.11) is
ω, so τ can be chosen to be 1/ω. We can infer from the second case that a rapid
oscillation in the injection will invalidate Darcy’s law.

3. Conformal-mapping approach
In this section we set up an equation to describe the motion of the free interface

including inertial effects, by using the conformal-mapping method. The equation we
derive is analogous to the P–G equation (Gustafsson & Vasil’ev 2006). The two-
phase problem is notoriously difficult partly because the pressure is not constant on
the interface. We will neglect the motion of the less viscous fluid so that the pressure
conditions on the boundary are simplified, as discussed below. Consider a viscous
fluid being injected into or removed from a Hele-Shaw cell from the origin at a time-
dependent rate Q(t). Motion of the flow is governed by the general dimensionless
UND equation (cf. (2.8)):

u + c1ut + c2(u · ∇)u = −∇P, (3.1)

where c1, c2 are positive constants. The flow is assumed to be incompressible and
irrotational, so the velocity potential satisfies

�φ = Q(t)δ(x), (3.2)

for a Dirac delta distribution δ(x). We shall ignore surface tension effects and assume
that the pressure is constant on Γ (t); without loss of generality this constant can
be taken to be zero. The second condition is that the material derivative of the pressure
vanishes on Γ (t), since it remains constant there. These two boundary conditions are
written as

P = 0,
DP

Dt
= 0, on Γ (t). (3.3)

Here D/Dt ≡ ∂/∂t + (u · ∇) is the material derivative.
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z = f (ζ, t)

f (0, t) = 0
fζ(0, t) > 0

ζ-plane
Z-plane

|ζ| ≤ 1

Ω(t)

Figure 1. Sketch of the conformal map from the parametric ζ -plane to the physical Z-plane.

By the Riemann mapping theorem there exists a unique conformal univalent map
f (ζ, t) from the unit disk in the (parametric) ζ -plane to the fluid region Ω(t) in the
(physical) Z-plane such that f (0, t) = 0 and fζ (0, t) > 0 (see figure 1). We denote by
F (z, t) the complex potential in the Z-plane with the real part φ; then the complex
potential in the ζ -plane, G(ζ, t), is related to F (z, t) via the time-dependent conformal
map f (ζ, t) as

G(ζ, t) = F (f (ζ, t), t) = F (z, t). (3.4)

We further assume that φ vanishes on Γ (t); this condition with (3.2) determines that
G(ζ, t) =Q(t)/2π log ζ + iκ (κ is any real constant).

We write (3.1) as a Bernoulli-like equation

P = −
(
φ + c1φt +

c2

2
|∇φ|2

)
+ H (t), (3.5)

for some function H of t only. Since both φ and P are zero on Γ (t), H (t) should
satisfy a compatibility condition given by the base flow state – a growing disk with
the radius given by (2.10). That is,

H (t) =
(
c1φ0t +

c2

2
|∇φ0|2

)
|Γ (t) =

Q2

8π2a2
(c2 − 2c1), (3.6)

where φ0 is the potential for the base flow.
Substituting (3.5) into boundary conditions (3.3) we obtain

φt + c1φtt + (c1 + c2)∇φ · ∇φt + |∇φ|2 +
c2

2
∇φ · ∇|∇φ|2 = Ḣ (t) on Γ (t). (3.7)

This equation can be rewritten in terms of f and its partial derivatives (see the
Appendix):

Re

[
− Qft

2πζfζ

+
c1Q

2π

(
2ζfζftfζ t − ζf 2

ζ ftt − ζf 2
t fζζ − fζf

2
t

ζ 2f 3
ζ

)
− c1Q̇ft

πζfζ

+
(c1 + c2)QQ̇

4π2|fζ |2

− (c1 + c2)Q
2

4π2

(
ζfζfζ t − ζftfζζ − ftfζ

ζ |fζ |2f 2
ζ

)
− c2Q

3

8π3

(
fζ + ζfζζ

fζ |fζ |4

)
+

Q2

4π2|fζ |2

]

= (c2 − 2c1)

(
QQ̇

4π2a2
− Q3

8π3a4

)
, on |ζ | = 1. (3.8)

We call this the generalized P–G equation. Note that c1 and c2 characterize respectively
the magnitude of the time-derivative term and that of the convection term in the
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UND equation. When they are both zero, (3.8) reduces to the P–G equation

Re
[
ζfζft

]
=

Q

2π
, (3.9)

whose many exact solutions in simple mappings such as polynomials and rational
and logarithmic functions have been obtained (Howison 1986; Dawson & Mineev-
Weinstein 1998; Gustafsson & Vasil’ev 2006). For example, if we assume

f (ζ, t) = β0(t)ζ +

N∑
k=1

βk(t) log(ζ − γk(t)) (3.10)

(βk(t), γk(t) are complex functions), we obtain a system of ordinary differential
equations in βk(t) and γk(t), leading to a logarithmic solution. It is likely that other
solutions to (3.8) can be found similarly.

4. Linear stability via conformal mapping
The task of determining the shape of the interface is equivalent to the search for

conformal maps satisfying the generalized P–G equation (3.8). We wish to consider
the linear stability of the base-flow solution f0(ζ, t) = a(t)ζ to infinitesimal two-
dimensional disturbances. Any such disturbance, if assumed to be geometrically
simply connected, can be represented as the image of the unit disk |ζ | � 1 under
some conformal map. Since the set of all polynomials {ζk}∞

k =0 forms a basis for all
analytic functions in |ζ | � 1, we can consider the perturbed map corresponding to
the nth mode:

f (ζ, t) = a(t)ζ + εb(t)ζ n+1 + O(ε2), (4.1)

where ε � 1, and the real-valued function b(t) is the perturbation function. A similar
approach has been taken by Meiron et al. (1984) and Crowdy & Cloke (2002) in
studies of point vortices.

As a test problem, we consider the P–G equation with non-zero surface tension (cf.
Gustafsson & Vasil’ev 2006):

Re[ζfζft ] =
Q

2π
+ γ H

[
i Im

ζ 2Sf (ζ, t)

|fζ |

]
(θ), ζ = eiθ , (4.2)

where H is the Hilbert transform,

H[ψ](θ) =
1

π
PV

∫ 2π

0

ψ(eiθ ′
)

1 − ei(θ−θ ′)
dθ ′, (4.3)

(PV denotes the Cauchy principal value), and Sf (ζ, t) is the Schwarzian derivative,

Sf (ζ ) =
∂

∂ζ

(
fζζ (ζ, t)

fζ (ζ, t)

)
− 1

2

(
fζζ (ζ, t)

fζ (ζ, t)

)2

. (4.4)

Plugging (4.1) into (4.2) and equating the O(ε) terms yields

ḃ(t) = − (n + 1)

a2

(
Q

2π
+

n(n − 1)γ

a

)
b(t). (4.5)

Paterson (1981) obtained the above equation by applying the standard linear stability
analysis. Here we recovered his result from the perspective of conformal-mapping
perturbation. Note that when γ = 0 the interface is always stable (unstable) if
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Q > 0 (Q < 0). For Q < 0 the unstable interface is sensitive to perturbations of all
wavelengths; moreover, those with the shortest wavelength have the fastest growth
rate. When surface tension is present, it suppresses the growth of the disturbance with
small wavelength, as expected (McLean & Saffman 1980; Paterson 1981).

With inertia included, we can perturb the conformal-map solution corresponding to
the base-state flow as described above. An oscillating injection rate (2.9) is considered
first. For convenience, we take α =Re∗; thus c2 = (6/5)c1. Substituting (4.1) into (3.8)
and equating the O(ε) terms yield the differential equation

c1b̈(t) + p(t)ḃ(t) + q(t)b(t) = 0, t � 0, (4.6)

where p(t) and q(t) are given by

p(t) = 1 +
(n − 10)c1Q

10πa2
+

2c1Q̇

Q
,

q(t) = (n + 1)

[
Q

2πa2
+

3c1Q̇

2πa2
− 17c1Q

2

20π2a4

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.7)

When Q > 0, we can show that the solution b(t) ≡ 0 is asymptotically stable in the
sense of Lyapunov for small enough c1; that is, b(t) → 0 as t → ∞. To see this, we
define a (positive-definite) Lyapunov function

V (b, ḃ, t) = b2 + c1bḃ +
c1(2 − p)

2q
ḃ2, (4.8)

which bounds b2 (up to a scalar factor), and show that λV̇ + q(t)V � 0 for a
large constant λ. Then since

∫ t

0
q(τ ) dτ → ∞ as t → ∞, it follows that V → 0 as

t → ∞. This direct proof by construction fails if c1 is larger than the critical value

ĉ1 = (1/3ω)
√

(Q2
0 − Q2

p)/Q2
p , since q(t) then no longer remains positive for large t . In

fact, for c1 > ĉ1, q(t) has infinitely many zeros. Yet numerical computations indicate
that b(t) converges to zero for large c1 as well (e.g. for ĉ1 = 0.05, we find that b → 0
for c1 as large as 10).

5. Effects of small inertia on the linear stability: Wentzel–Kramers–Brillouin
approximation

We next investigate how the linear stability results obtained by Paterson (1981)
are changed by a small amount of inertia. In the following we will assume that the
constant c1 appearing in (4.6) is small and positive. It is known that the only boundary
layer of (4.6) lies near t = 0 (Bender & Orszag 1978). We are more concerned with
the behaviour of the solution at large time, in particular the convergence rate of the
solution to zero as time approaches infinity. Using the Wentzel–Kramers–Brillouin
approximation, we can assume that the outer solution of (4.6) takes the form

bout (t) = eg(t), where g(t) = g0(t) + c1g1(t) + O
(
c2
1

)
(0 < c1 � 1). (5.1)

By substituting the above expression into (4.6) and equating the coefficients of O(ck
1)

terms (notice that both p(t) and q(t) contain c1), we obtain

bout (t) = K · exp

[
−

∫ t

0

(n + 1)Q

2πa2
+ c1D1(t) + O

(
c2
1

)]
, (5.2)
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Figure 2. (Colour online) Plot of the function c1D1(t): the injection rate is (2.9) with Q0 = 1,
Qp =0.8, ω = 20, a(0) = 0.2, c1 = 0.1, n= 3.

where

D1(t) = −
∫ t

0

(n + 1) (n + 2)Q2

5π2a4
, (5.3)

and the constant K is determined by asymptotic matching between the outer and
inner solutions whose exact value is of little interest to us in the current study.

When c1 = 0, bout (t) = exp{−
∫ t

0
(n + 1)Q/2πa2} which reduces to the classical case of

(4.5) for γ = 0. Note that the term c1D1(t) should be regarded as the inertial correction
to the growth rate of the nth-mode perturbation. One can observe that D1(t) < 0. It
follows that small inertia always decreases the amplitude of the perturbation regardless
of the direction of motion of the interface. This is in agreement with the experimental
finding of Chevalier et al. (2006) that inertia tends to slow down the fingers. With
an oscillating injection, the stability of the interface might be further enhanced by
proper choice of the parameters in Q(t) (see figure 2).

6. Conclusion
In this paper we have investigated the limits and corrections that inertia imposes

on Darcy’s law in a circular Hele-Shaw cell; we have found that it becomes invalid
if either the modified Reynolds number is not small, or the frequency of the fluid
injection is large. To describe the evolution of the free interface, we have applied the
method of conformal mapping to derive a nonlinear non-local equation on the unit
circle which takes into account inertial effects, a generalization of the P–G equation. It
has been assumed that the interface is a level curve of the velocity potential. Since the
pressure field is no longer harmonic, most methods developed to solve the Laplacian
growth problem will not apply in this case. In particular, since (4.2) requires solving
the Dirichlet problem for a harmonic function P , we have not been able to treat
both inertial and surface tension effects in our formulation. The linear stability of the
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base-state solution, a uniformly growing circle whose radius depends on the injection
rate, has been analysed by perturbing the corresponding conformal map.

If the inertia is small but not negligible, we have shown that it contributes only
a secondary effect and does not change the Saffman–Taylor instability drastically.
Moreover, whether a less viscous fluid displaces a more viscous fluid or vice versa,
small inertia always has the tendency to stabilize, in that the amplitude of the
disturbance approaches zero faster than the non-inertial case. This stabilizing tendency
can be further enhanced by proper choice of the injecting function Q(t). When the
inertia is large, no rigorous conclusion has been drawn; yet numerical computations
suggest the same stabilizing effect.

The scenario we have examined here is for a Hele-Shaw flow in a circular geometry,
with a viscous fluid injected or extracted at one point. One can extend this analysis
to the situation in which a viscous fluid sits at the exterior and a less viscous one is
injected or extracted at a point and also to a cell with linear geometry.

Appendix. Derivation of the generalized Polubarinova–Galin equation (3.8)
Taking partial derivatives of (3.4) with respect to z and t and using ζt = −ft/fζ we

can compute

Fz =
Q

2πζfζ

, Ft =
Q̇

2π
log ζ +

Q

2π
=

Q̇

2π
log ζ − Qft

2πζfζ

,

Ftz =
∂Ft

∂ζ

/
∂z

∂ζ
=

Q̇

2πζfζ

− Q

2π

ζfζfζ t − ζftfζζ − ftfζ

ζ 2f 3
ζ

,

Ftt =
∂

∂t
Ft +

∂

∂ζ
Ft · ζt =

Q̈

2π
log ζ − Q̇ft

πζfζ

+
Q

2π

2ζfζftfζ t − ζf 2
ζ ftt − ζf 2

t fζζ − fζf
2
t

ζ 2f 3
ζ

,

Fzz =
∂

∂ζ
Fz/fζ = − Q

2π

fζ + ζfζζ

ζ 2f 3
ζ

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)

To write the above equations in terms of the conformal map f and its partial
derivatives, we first observe that from the definition of F we have

φt = Re(Ft ) = −Re

(
Qft

2πζfζ

)
, φtt = Re(Ftt ), |∇φ|2 = |Fz|2 =

Q2

4π2|fz|2
. (A 2)

Moreover, since Fz = φx − iφy and Fzt = φxt − iφyt ,

∇φ · ∇φt = Re(FzFzt )

= Re

(
QQ̇

4π2|fζ |2 − Q2

4π2

ζfζfζ t − ζftfζζ − ftfζ

ζ |fζ |2f 2
ζ

)
. (A 3)

Similarly, since

∇|∇φ|2 = (2φxφxx + 2φyφxy, 2φxφxy + 2φyφyy) = (2 Re(FzF zz), 2 Im(FzF zz)), (A 4)

the last term on the left-hand-side of (3.7) can be rewritten as

∇φ · ∇|∇φ|2 = 2(Re(F z), Im(F z)) · (Re(FzF zz), Im(FzF zz)) = 2 Re(F 2
z F zz)

= − Q3

4π3

fζ + ζfζζ

fζ |fζ |4 . (A 5)
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